Preparation of Benzocyclobutenones via the Photochemical Cyclization of 1-(ortho-Alkylaryl)-2,2,4-trimethylpentane-1,3-diones

Michikazu Yoshioka,*,a Shinobu Momose, ${ }^{a}$ Kaori Nishizawa ${ }^{a}$ and Tadashi Hasegawa ${ }^{\text {b }}$
${ }^{a}$ Department of Chemistry, Saitama University, Shimo-okubo, Urawa, Saitama 338, Japan
${ }^{\text {b }}$ Department of Chemistry, Tokyo Gakugei University, Nukuikitamachi, Koganei, Tokyo 184, Japan

Irradiation of 1-(ortho-methylaryl)- and 1-(ortho-ethylaryl)-2,2,4-trimethylpentane-1,3-diones 4a-g in hexane gave benzocyclobutenols 10a-g. However, irradiation of 1-(ortho-isopropylaryl)-2,2,4-trimethylpentane-1,3-diones $4 i$ and $4 j$ resulted in no reaction. Irradiation of 1 -mesityl-2,2,4-tri-methylpentane-1,3-dione 4h gave a complex mixture of products. Pyrolysis of benzocyclobutenols 10a, b, d-f gave benzocyclobutenones 11a, b, d-f and 2,4-dimethylpentan-3-one 2, whereas that of the benzocyclobutenols 10c, g gave the starting 1,3-diketones 4c, g predominantly along with small amounts of benzocyclobutenones $11 \mathrm{c}, \mathrm{g}$ and the dimethylpentanone 2.

The reactivity of benzocyclobutenone and its derivatives has been extensively studied ${ }^{1}$ and a number of methods for the synthesis of these compounds have been developed. The $[2+$ 2]cycloaddition of benzynes to 1,1 -dimethoxyethylene followed by hydrolysis, ${ }^{1 e}$ the thermal elimination of hydrogen chloride from o-(trichloromethyl)methylbenzenes to afford 1,1-dichlorobenzocyclobutenes followed by hydrolysis, ${ }^{1 b .2}$ the ring closure of ortho-alkylbenzoyl chlorides, ${ }^{3} o$-trimethylsilylmethyl- and o -bis(trimethylsilyl)methyl-benzoyl chlorides ${ }^{4}$ with thermal loss of hydrogen chloride or trimethylsilyl chloride, and the ring closure of ortho-[(α-phenylthio)alkyl]benzoyltrimethylsilanes in the presence of a Group 6 metal carbonyl catalyst ${ }^{5}$ are major routes for the preparative synthesis of benzocyclobutenones. We have recently reported that 1 -(o-methylphenyl)-2,2-dimethyl 1,3-diketones underwent photocyclization to give benzocyclobutenols and naphthalenones in hexane, and that the benzocyclobutenols thus formed underwent thermal retro-aldol cleavage to give benzocyclobutenone and isopropyl ketone (Scheme 1). ${ }^{6.7}$ The benzocyclobutenol: naphthalenone ratio was influenced by the substituent R. This ratio increased with chain branching of \mathbf{R} and with increasing size of \mathbf{R}. When $\mathbf{R}=$ Me or Et the naphthalenone was the main product, and when $\mathbf{R}=\operatorname{Pr}^{\mathbf{i}}$ the benzocyclobutenol predominated. The photocyclization of 1-(ortho-alkylaryl)-3-isopropyl 1,3-diketones may be applicable to the synthesis of various substituted benzocyclobutenones. We report here the new method for the preparation of substituted benzocyclobutenones via the photochemical cyclization of 1-(ortho-alkylaryl)-2,2,4-trimethylpentane-1,3-diones 4 followed by thermal cleavage of the resulting benzocyclobutenols 10 .

Results and Discussion

The ortho-alkylaryl 1,3-diketones 4a-c were prepared in 60 70% overall yield via the condensation of 2,4-dimethylpentan-3one 2 with the corresponding ortho-alkylaryl aldehyde 1, followed by oxidation of the corresponding product ketols 3 with Jones' reagent. ${ }^{7}$ The 1,3 -diketones $4 d-j$ were prepared by the reaction of substituted isobutyrophenones $7 \mathbf{d}-\mathrm{j}$, which were prepared by the Friedel-Crafts acylation of the corresponding alkylbenzenes 5 , with isobutyraldehyde 8 , followed by oxidation of the resulting ketols $9 \mathrm{~d}-\mathrm{j}$ in $40-65 \%$ overall yield by the same method as above (Scheme 2).

Irradiation of a solution of 1 -(ortho-methylaryl)-2,2,4-tri-methylpentane-1,3-diones $\mathbf{4 a}, \mathbf{b}, \mathbf{d - f}$ in hexane $(0.6-15 \mathrm{~g}$ in $100-$ $450 \mathrm{~cm}^{3}$) under nitrogen with a high-pressure mercury lamp through a Pyrex filter gave benzocyclobutenols 10a, b, d-f, which

Scheme 1 Conditions: i, $h v$; ii, $150^{\circ} \mathrm{C}$

Table 1 Yield of benzocyclobutenols 10 obtained in the photolysis of 1-(ortho-alkylaryl)-2,2,4-trimethylpentane-1,3-diones 4 in hexane

Diketone	Ir radiated solution ($\mathrm{g} / \mathrm{cm}^{3}$)	Hg lampa ${ }^{\text {a }}$ (W)	Time (h)	Conversion $(\%)^{b}$	Yield of 10 $(\%)^{c}$
4a	15.0/400	450	22	98	72
4b	3.05/100	100	8	80	87
4c	0.60/100	100	20	73	60
4 d	2.64/100	100	7	94	42
4e	0.60/120	100	5	58	44
4 f	2.00/400	450	2	74	58
4g	2.50/400	450	6	42	50
$4{ }^{\text {d }}$	0.65/120	100	0.5		
$4 \mathbf{4 i ~}^{\text {e }}$	0.62/120	100	20		
$4{ }^{\mathbf{j}}$	0.61/120	100	20		

[^0]were isolated by column chromatography (Scheme 3). The ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 0 a}, \mathbf{b}, \mathbf{d}-\mathbf{f}$ showed an AB-quartet at $\delta 2.98-3.05$ and $3.35-3.40(J 14 \mathrm{~Hz})$ due to two methylene protons of the four-membered ring. The IR spectra showed hydroxy ($3450-3550 \mathrm{~cm}^{-1}$) and carbonyl (1680-1700 cm^{-1}) absorptions. In contrast to compounds 4a, b, d-f, irradiation of 1-mesityl-2,2,4-trimethylpentane-1,3-dione 4 h gave a complex mixture of products, from which we could not isolate the corresponding benzocyclobutenol. Irradiation of o-ethylphenyl 1,3-diketones $\mathbf{4 c}$ and $\mathbf{4 g}$ under the same conditions gave the corresponding benzocyclobutenol 10 c and 10 g (Scheme 3), though the rate of reaction was about five times slower than that of ortho-methylaryl 1,3-diketones (see Table 1). The stereochemistry of compounds 10 c and 10 g is probably cis with respect to the $C-\left(1^{\prime}\right)$ hydroxy and $C\left(2^{\prime}\right)$ methyl groups, because

Scheme 2 Reagents: i, $\mathrm{PhNMeMgBr} ; \mathrm{ii}, \mathrm{CrO}_{3} ;$;ii, AlCl_{3}

a; $\mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{R}^{\mathbf{3}}=\mathbf{R}^{4}=\mathrm{H}$
b; $R^{1}=R^{2}=R^{4}=H, R^{3}=M e$
c; $R^{1}=M e, R^{2}=R^{3}=R^{4}=H$
d; $R^{1}=R^{2}=R^{3}=H, R^{4}=M e$
e; $R^{\prime}=R^{2}=R^{4}=H, R^{3}=\operatorname{Pr}^{\prime}$
f; $R^{1}=R^{2}=R^{4}=H, R^{3}=B u^{t}$
g; $R^{1}=M e, R^{2}=R^{4}=H, R^{3}=E t$
Scheme 3 Conditions: $h v$
in the benzocyclobutenol 10 intramolecular hydrogen bonding between the hydroxy and the carbonyl is expected ${ }^{7}$ and this hydrogen bonding causes the severe steric interaction between the $\mathrm{C}\left(1^{\prime}\right)$ 2,4-dimethyl-3-oxopentan-2-yl group and the $\mathrm{C}\left(2^{\prime}\right)$

a; $\mathbf{R}^{\mathbf{1}}=\mathbf{R}^{\mathbf{2}}=\mathbf{R}^{\mathbf{3}}=\mathbf{R}^{\mathbf{4}}=\mathbf{H}$
b; $R^{1}=R^{2}=R^{4}=H, R^{3}=M e$
c; $R^{1}=M e, R^{2}=R^{3}=R^{4}=H$
d; $R^{1}=R^{2}=R^{3}=H, R^{4}=M e$
e; $\mathbf{R}^{1}=\mathbf{R}^{2}=\mathbf{R}^{4}=H, R^{3}=\operatorname{Pr}^{\mathbf{i}}$
f; $R^{1}=R^{2}=R^{4}=H, R^{3}=B u^{t}$
g; $\mathbf{R}^{\prime}=\mathbf{M e}, R^{\mathbf{2}}=\mathbf{R}^{4}=\mathrm{H}, \mathbf{R}^{\mathbf{3}}=\mathrm{Et}$
Scheme 4 Conditions: $150-180^{\circ} \mathrm{C}$
methyl group trans to the $\mathrm{C}\left(1^{\prime}\right)$ hydroxy group. orthoIsopropylaryl 1,3 -diketones 4 i and 4 j underwent no photoreaction under the same conditions. The benzocyclobutenols from $4 \mathrm{i}, \mathrm{j}$ have two methyl groups on $\mathrm{C}\left(2^{\prime}\right)$, and the methyl group trans to the $\mathrm{C}\left(1^{\prime}\right)$ hydroxy group interacts severely with the $2,4-$ dimethyl-3-oxopentan-2-yl group of $\mathrm{C}\left(1^{\prime}\right)$. This severe steric interaction would cause the reversion of the intermediate diradicals from $\mathbf{4 i}, \mathbf{j}$ to the starting ketones, rather than cyclization to give benzocyclobutenols.

The benzocyclobutenol $10 \mathrm{a}(8 \mathrm{~g})$ was placed in a sealed glass tube under reduced pressure (0.5 mmHg) and heated at $180^{\circ} \mathrm{C}$ for 3 h . The ${ }^{1} \mathrm{H}$ NMR analysis of the reaction mixture revealed the quantitative formation of benzocyclobuten-1 $(2 \mathrm{H})$-one 11 a and 2,4 -dimethylpentane-3-one 2 . Compound 11a was separated by distillation in a Kugelrohr apparatus in 72% isolated yield (Scheme 4). Pyrolysis of benzocyclobutenols 10b, d-f, which have no substituent on $\mathrm{C}\left(2^{\prime}\right)$, gave the corresponding benzocyclobutenones 11b, d-f in good yield. In contrast to 10a, b, d-f, pyrolysis of $10 \mathbf{c}, \mathbf{g}$ which have a methyl group on $\mathrm{C}\left(\mathbf{2}^{\prime}\right)$ gave the starting ketones $\mathbf{4 c}, \mathrm{g}$ as the major product along with small amounts of the benzocyclobutenone 11c, \mathbf{g} and 2,4-dimethylpentan-3-one 2. The product ratio 4:11 was $c a .9: 1$ on the basis of the ${ }^{1} \mathrm{H}$ NMR spectrum of the pyrolysis mixture. The conversion into diketones 4 in preference to the formation of cyclobutenones 11 may be ascribed to the methyl group stabilizing a radical or an enol arising from $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$ bond fission. It is known that benzocyclobutenols revert to the starting ketones when heated. ${ }^{8}$ Direct injection of the benzocyclobutenol 10 onto the GLC column heated at 150$180^{\circ} \mathrm{C}$ caused the decomposition of compounds 10 to the benzocyclobutenone 11, the pentanone 2 , and the starting ketone 4. The isolation of 2-methylbenzocyclobutenones 11c and 11 g was achieved by preparative GLC with direct injection of the benzocyclobutenol 10 onto the column.
In conclusion, irradiation of 1-(ortho-methylaryl)- and 1-(ortho-ethylaryl)-2,2,4-trimethylpentane-1,3-diones in hexane gave benzocyclobutenols. The benzocyclobutenols thus formed underwent thermal reaction to give benzocyclobutenones, 2,4-dimethylpentan-3-one, and/or the starting 1,3-diketones. This reaction is useful for the synthesis of benzocyclobutenones having no substituent on $\mathbf{C}(2)$ because benzocyclobutenols having no substituent on $\mathrm{C}\left(2^{\prime}\right)$ undergo thermal retro-aldol cleavage in preference to the $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$ bond fission, whereas benzocyclobutenols having a methyl group on $\mathrm{C}\left(2^{\prime}\right)$ undergo $\mathrm{C}\left(1^{\prime}\right)-\mathrm{C}\left(2^{\prime}\right)$ bond fission predominantly.

Experimental

M.p.s and b.p.s are uncorrected. M.p.s were measured with a Mitamura 7-20 apparatus, and b.p.s with a Büchi Kugelrohr KR apparatus. IR spectra were recorded on a Hitachi 270-50 spectrometer for solutions in $\mathrm{CCl}_{4} .{ }^{1} \mathrm{H}$ NMR spectra were obtained with a JEOL PMX-60, a JEOL FX-90Q, or a Briker AM-400 spectrometer with CDCl_{3} as solvent unless otherwise stated. Tetramethylsilane was used as internal standard and J values are given in Hz . ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Bruker AM-400 spectrometer with CDCl_{3} as solvent. GLC was carried out on a Gasukuro Kogyo KOR-70 instrument using $5 \mathrm{~m} \times 6 \mathrm{~mm}$ aluminium column containing 10% SE-30 on Chromosorb W. Column chromatography was performed with Merck Kieselgel 60. An Ushio 100 W or 450 W high-pressure mercury lamp was used as the irradiation source.

Starting Materials.-Compounds $\mathbf{4 a}-\mathrm{c}$ were prepared by the condensation of 2,4-dimethylpentan-3-one 2 with the corresponding aldehydes $\mathbf{l a - c}$ with N-methylanilinomagnesium bromide as the condensation agent, ${ }^{9}$ followed by Jones oxidation, where o-ethylbenzaldehyde 1c was prepared by the reported method. ${ }^{10}$ Compounds $4 \mathrm{~d}-\mathrm{j}$ were prepared by the same method from isobutyraldehyde 8 and isobutyrophenones $7 \mathrm{~d}-\mathrm{j}$, which were prepared by the Friedel-Crafts acylation of the corresponding alkylbenzenes $5 \mathrm{~d}-\mathrm{j}$ with isobutyryl chloride 6 .

2,2,4-Trimethyl-1-(o-methylphenyl)pentane-1,3-dione $4 \mathrm{a}^{7}$ had b.p. $115^{\circ} \mathrm{C}$ at 0.7 mmHg (Found: $\mathrm{C}, 77.3 ; \mathrm{H}, 8.5$. Calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 77.6 ; \mathrm{H}, 8.7 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1720$ (alkyl ketone) and 1690 (aryl ketone); $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 0.95(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe} 2)$, $1.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.36(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 2.93(1 \mathrm{H}$, sept., $J 7$, $\mathrm{CH} \mathrm{Me}_{2}$) and 7.05-7.30 ($4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).
1-(2',5'-Dimethylphenyl)-2,2,4-trimethylpentane-1,3-dione 4b had b.p. $95^{\circ} \mathrm{C}$ at 0.3 mmHg (Found: $\mathrm{C}, 78.0 ; \mathrm{H}, 9.1 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 9.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1710$ (alkyl ketone) and 1680 (aryl ketone); $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.00\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{CH} \mathrm{Me}_{2}\right), 1.44$ $\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.30(3 \mathrm{H}, \mathrm{s})$ and $2.35(3 \mathrm{H}, \mathrm{s})(2 \times \mathrm{ArMe}), 3.00(1$ H , sept., $J 7, \mathrm{C} H \mathrm{Me}_{2}$) and $7.00-7.20(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

1-(o-Ethylphenyl)-2,2,4-trimethylpentane-1,3-dione 4 c had b.p. $95^{\circ} \mathrm{C}$ at 0.3 mmHg (Found: $\mathrm{C}, 78.0 ; \mathrm{H}, 9.0 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 9.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1720$ (alkyl ketone) and 1690 (aryl ketone); $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.00\left(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{2}\right), 1.23$ $\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.45\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.69(2 \mathrm{H}, \mathrm{q}, J 7$, $\mathrm{CH}_{2} \mathrm{Me}$), 3.07 (1 H , sept., $J 7, \mathrm{CH} \mathrm{Me} 2$) and 7.10-7.40 $(4 \mathrm{H}, \mathrm{m}$, ArH).
(2',4'-Dimethylphenyl)-2,2,4-trimethylpentane-1,3-dione 4d had b.p. $110^{\circ} \mathrm{C}$ at 0.4 mmHg (Found: $\mathrm{C}, 78.0 ; \mathrm{H}, 8.9 . \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.0 ; \mathrm{H}, 9.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1720$ (alkyl ketone) and 1680 (aryl ketone); $\delta_{\mathrm{H}}(90 \mathrm{MHz}) 0.96\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{CH} \mathrm{Me}_{2}\right), 1.44$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), $2.31(3 \mathrm{H}, \mathrm{s})$ and $2.39(3 \mathrm{H}, \mathrm{s})(2 \times \mathrm{ArMe}), 2.94(1$ H , sept., $J 7, \mathrm{CH} \mathrm{Me}_{2}$) and 6.90-7.25 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

1-(5'-Isopropyl-2'-methylphenyl)-2,2,4-trimethylpentane-1,3dione 4 e had b.p. $85^{\circ} \mathrm{C}$ at 0.5 mmHg (Found: $\mathrm{C}, 78.5 ; \mathrm{H}, 9.4$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.8 ; \mathrm{H}, 9.6 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1705$ (alkyl ketone) and 1680 (aryl ketone); $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 0.93(6 \mathrm{H}, \mathrm{d}, J$ 7) and $1.61(6 \mathrm{H}, \mathrm{d}, J 7)\left(2 \times \mathrm{CHMe} e_{2}\right), 1.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.33$ ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 2.56-3.17(2 H, m, $2 \times \mathrm{CH} \mathrm{Me}_{2}$) and $7.03(3 \mathrm{H}, \mathrm{s}$, ArH).

1-(5'-tert-Butyl-2'-methylphenyl)-2,2,4-trimethylpentane-1,3dione 4 f had b.p. $110^{\circ} \mathrm{C}$ at 0.4 mmHg (Found: $\mathrm{C}, 79.1 ; \mathrm{H}, 9.7$. $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.1 ; \mathrm{H}, 9.8 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1710$ (alkyl ketone) and 1680 (aryl ketone); $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 0.93(6 \mathrm{H}, \mathrm{d}, J$ 7, CHMe $)_{2}$, $1.30\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 1.37\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.38(3 \mathrm{H}, \mathrm{s}$, ArMe), $2.90\left(1 \mathrm{H}\right.$, sept., $J 7, \mathrm{CH} \mathrm{Me}_{2}$) and $7.13(3 \mathrm{H}, \mathrm{s}, \mathrm{ArH})$.

1-($2^{\prime}, 5^{\prime}$-Diethylphenyl)-2,2,4-trimethylpentane-1,3-dione $\quad \mathbf{4 g}$ had b.p. $105^{\circ} \mathrm{C}$ at 0.6 mmHg (Found: $\mathrm{C}, 78.8 ; \mathrm{H}, 9.6 . \mathrm{C}_{18} \mathrm{H}_{26} \mathrm{O}_{2}$ requires $\mathrm{C}, 78.8 ; \mathrm{H}, 9.6 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1720$ (alkyl ketone) and 1680 (aryl ketone); $\left.\delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CCl}_{4}\right) 0.96(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe})_{2}\right)$,
$1.20\left(6 \mathrm{H}, \mathrm{t}, J 7,2 \times \mathrm{CH}_{2} \mathrm{Me}\right), 1.40\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.57(2 \mathrm{H}, \mathrm{q}, J$ 7) and $2.64(2 \mathrm{H}, \mathrm{q}, J 7)\left(2 \times \mathrm{CH}_{2} \mathrm{Me}\right), 2.96(1 \mathrm{H}$, sept., $J 7$, $\mathrm{CH} \mathrm{Me}_{2}$) and 6.85-7.16 ($3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

2,2,4-Trimethyl-1-($2^{\prime}, 4^{\prime}, 6^{\prime}$-trimethylphenyl)pentane-1,3-dione 4h had b.p. $105^{\circ} \mathrm{C}$ at 0.4 mmHg (Found: $\mathrm{C}, 78.2 ; \mathrm{H}, 9.3$. $\mathrm{C}_{1} 7 \mathrm{H}_{24} \mathrm{O}_{2}$ requires C, 78.4; $\mathrm{H}, 9.3 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1715$ (alkyl ketone) and 1690 (aryl ketone); $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 1.00(6 \mathrm{H}, \mathrm{d}, J$ 7, $\mathrm{CH} M e_{2}$), 1.36 ($6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}$), 2.03 ($6 \mathrm{H}, \mathrm{s}, 2^{\prime}$ - and $6^{\prime}-\mathrm{Me}$), 2.23 ($3 \mathrm{H}, \mathrm{s}, 4^{\prime}-\mathrm{Me}$), $3.50\left(1 \mathrm{H}\right.$, sept., J 7, $\mathrm{CH} \mathrm{Me}_{2}$) and $6.67(2 \mathrm{H}, \mathrm{s}$, ArH).

1-(2',5'-Diisopropylphenyl)-2,2,4-trimethylpentane-1,3-dione 4i had b.p. $115^{\circ} \mathrm{C}$ at 0.5 mmHg (Found: C, 79.5; H, 9.9 . $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}$ requires $\mathrm{C}, 79.4 ; \mathrm{H}, 10.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1720$ (alkyl ketone) and 1680 (aryl ketone); $\delta_{\mathrm{H}}\left(60 \mathrm{MHz}, \mathrm{CCl}_{4}\right) 0.96(6 \mathrm{H}, \mathrm{d}, J$ 7), $1.23(6 \mathrm{H}, \mathrm{d}, J 7)$ and $1.35(6 \mathrm{H}, \mathrm{d}, J 7)\left(3 \times \mathrm{CH} M e_{2}\right), 1.40(6$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.60-3.33\left(3 \mathrm{H}, \mathrm{m}, 3 \times \mathrm{CHMe} \mathrm{M}_{2}\right), 6.95(2 \mathrm{H}, \mathrm{m})$ and $7.15(1 \mathrm{H}, \mathrm{s})(\mathrm{ArH})$.

1-(2',4'-Diisopropylphenyl)-2,2,4-trimethylpentane-1,3-dione 4 j had b.p. $120^{\circ} \mathrm{C}$ at 0.4 mmHg (Found: C, 79.6; H, 10.0 . $\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{O}_{2}$ requires C, 79.4; $\mathrm{H}, 10.0 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 1710$ (alkyl ketone) and 1680 (aryl ketone); $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.00(6 \mathrm{H}, \mathrm{d}, J 7)$, $1.23(6 \mathrm{H}, \mathrm{d}, J 7)$ and $\left.1.24(6 \mathrm{H}, \mathrm{d}, J 7)(3 \times \mathrm{CHMe})_{2}\right), 1.45(6 \mathrm{H}$, s, CMe_{2}), $2.89(1 \mathrm{H}$, sept., $J 7$) and $3.05(2 \mathrm{H}$, sept., J 7) $\left(3 \times \mathrm{CH} M e_{2}\right), 6.99(1 \mathrm{H}, \mathrm{d}, J 8), 7.05(1 \mathrm{H}, \mathrm{d}, J 8)$ and $7.23(1 \mathrm{H}$, s) (ArH).

General Procedure for the Preparative Photolysis of Diketones 4.-A solution of the diketone 4 in hexane was irradiated under nitrogen with light from a high-pressure mercury lamp through a Pyrex filter. The concentration, the lamp used, and the irradiation time are given in Table 1. The benzocyclobutenols 10 were isolated by silica gel column chromatography with benzene-ethyl acetate ($20: 1$) for 10a, b, d, hexane-ethyl acetate (6:1) for $10 \mathrm{c}, \mathrm{e}$, or hexane-ethyl acetate (9:1) as eluent for $10 \mathrm{f}, \mathrm{g}$. Irradiation of compound 4h gave a complex mixture of products. Compounds $\mathbf{4 i}$, \mathbf{j} underwent no photoreaction.

2-(1^{\prime}-Hydroxy- $1^{\prime}, 2^{\prime}$-dihydrobenzocyclobuten- 1^{\prime}-yl)-2,4-dimethylpentan-3-one $10 \mathrm{a}^{7}$ had m.p. $37^{\circ} \mathrm{C}$ (from pentane) (Found: C, 77.4; H, 8.7. Calc. for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{2}: \mathrm{C}, 77.6 ; \mathrm{H}, 8.7 \%$); $v_{\text {max }} / \mathrm{cm}^{-1} 3600$ and $3500 \mathrm{br}(\mathrm{OH})$ and $1700(\mathrm{C}=0) ; \delta_{\mathrm{H}}(90 \mathrm{MHz})$ $\left.1.08(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CHMe})_{2}\right), 1.21(3 \mathrm{H}, \mathrm{s})$ and $1.24(3 \mathrm{H}, \mathrm{s})\left(\mathrm{CMe}_{2}\right)$, $3.12\left(1 \mathrm{H}\right.$, sept., J 7, $\mathrm{C} H \mathrm{Me}_{2}$), $3.04(1 \mathrm{H})$ and $3.38(1 \mathrm{H})(\mathrm{AB}-$ system, $\left.J 14,2^{\prime}-\mathrm{H}_{2}\right), 3.92(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $7.00-7.30(4 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH}) ; \delta_{\mathrm{C}}(22.5 \mathrm{MHz}) 19.5(\mathrm{q}), 19.6(\mathrm{q}), 19.8(\mathrm{q})$ and $20.3(\mathrm{q})$ ($4 \times \mathrm{Me}$), 34.9 (d, $C \mathrm{HMe}_{2}$), 42.1 (t, C-2'), 52.7 ($\mathrm{s}, C \mathrm{Me}_{2}$), 84.2 (s, C-1'), 121.7 (d), 122.9 (d), 126.7 (d), 128.8 (d), 141.8 (s) and 147.6 (s) (ArC) and 221.3 (s, $\mathrm{C}=\mathrm{O}$).

2-(1^{\prime}-Hydroxy- $1^{\prime}, 2^{\prime}$-dihydro- 5^{\prime}-methylbenzocyclobuten -1^{\prime} -yl)-2,4-dimethylpentan-3-one $10 \mathrm{~b} .{ }^{*} v_{\text {max }} / \mathrm{cm}^{-1} 3500(\mathrm{OH})$ and $1690(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.09\left(6 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e_{2}\right), 1.24(3 \mathrm{H}, \mathrm{s})$ and $1.25(3 \mathrm{H}, \mathrm{s})\left(\mathrm{CMe}_{2}\right), 2.32(3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}), 3.16(1 \mathrm{H}$, sept., $J 7$, $\mathrm{CH} \mathrm{Me}_{2}$), $2.98(1 \mathrm{H})$ and $3.35(1 \mathrm{H})$ (AB-system, $J 14,2^{\prime}-\mathrm{H}_{2}$), $3.90(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $6.95-7.10(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 19.9$ (q), $20.0(\mathrm{q}), 20.1(\mathrm{q}), 20.7(\mathrm{q})$ and $21.9(\mathrm{q})(5 \times \mathrm{Me}), 35.0(\mathrm{~d}$, CHMe ${ }_{2}$), 41.7 (t, C-2'), 53.1 ($\mathrm{s}, C \mathrm{Me}_{2}$), 84.2 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 122.5 (d), 123.1 (d), 130.0 (d), 136.8 (s), 138.8 (s) and 147.5 (s) (ArC) and 222.4 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

2-(1^{\prime}-Hydroxy- $1^{\prime}, 2^{\prime}$-dihydro- 2^{\prime}-methylbenzocyclobuten- 1^{\prime} -yl)-2,4-dimethylpentan-3-one 10c.* $v_{\text {max }} / \mathrm{cm}^{-1} 3500(\mathrm{OH})$ and $1685(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.11(3 \mathrm{H}, \mathrm{d}, J 7)$ and $1.13(3 \mathrm{H}, \mathrm{d}, J 7)$ $\left.(\mathrm{CHMe})_{2}\right), 1.17(3 \mathrm{H}, \mathrm{s})$ and $1.44(3 \mathrm{H}, \mathrm{s})\left(\mathrm{CMe}_{2}\right), 1.36(3 \mathrm{H}, \mathrm{d}, J 7$,

[^1]Table 2 Yield of benzocyclobutenones 11 obtained in the pyrolysis of benzocyclobutenols 10

	Temperature and pressure $\left({ }^{\circ} \mathrm{C} / \mathrm{mmHg}\right)^{a}$	Time (h)	Yield of $\mathbf{1 1}(\%)$
$\mathbf{1 0 a}$	$180 / 0.5$	1	72^{b}
$\mathbf{1 0 b}$	$150 / 0.7$	3	87^{b}
$\mathbf{1 0 c}$	$180 / 0.5$	3	$\sim 10^{c}$
$\mathbf{1 0 d}$	$150 / 760$	3	75^{b}
$\mathbf{1 0 e}$	$150 / 0.5$	3	58^{b}
$\mathbf{1 0 f}$	$150 / 0.5$	3	67^{b}
$\mathbf{1 0 g}$	$150 / 0.5$	3	$\sim 10^{c}$

${ }^{a}$ Pyrolysis was carried out in a glass tube sealed under reduced pressure. ${ }^{b}$ Isolated yield. ${ }^{\boldsymbol{c}}$ Pyrolysis of substrates $\mathbf{1 0 c}$ and 10 g gave mainly the starting ketone $\mathbf{4 c} / \mathbf{4 g}$ along with small amounts of the benzocyclobutenone $11 \mathrm{c} / 11 \mathrm{~g}$. Compounds 11 c and 11 g were isolated by direct pyrolysis of $10 \mathrm{c} / 10 \mathrm{~g}$ on a GLC column.
$\left.2^{\prime}-\mathrm{Me}\right), 3.17\left(1 \mathrm{H}\right.$, sept., $J 7, \mathrm{CHMe}_{2}$), $3.73\left(1 \mathrm{H}, \mathrm{q}, J 7,2^{\prime}-\mathrm{H}\right)$, $4.44(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $7.05-7.40(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(100 \mathrm{MHz}) 15.4$ (q), 19.9 (q), $20.3(\mathrm{q}), 21.3(\mathrm{q})$ and $23.5(\mathrm{q})(5 \times \mathrm{Me}), 35.2(\mathrm{~d}$, CHMe ${ }_{2}$), 52.3 ($\mathrm{s}, \mathrm{CMe}_{2}$), 54.2 (d, C-2'), 86.8 ($\mathrm{s}, \mathrm{C}-1^{\prime}$), 121.7 (d), 121.8 (d), 127.2 (d), 129.3 (d), 145.1 (s) and 147.3 (s) ArC) and 223.3 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

2-(1'-Hydroxy- $1^{\prime}, 2^{\prime}$-dihydro-4'-methylbenzocyclobuten- 1^{\prime} -yl)-2,4-dimethylpentan-3-one 10d.* $v_{\text {max }} / \mathrm{cm}^{-1} 3450(\mathrm{OH})$ and $1680(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.07\left(6 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{CH} M e_{2}\right), 1.23(6 \mathrm{H}, \mathrm{s}$, CMe_{2}), 2.33 ($3 \mathrm{H}, \mathrm{s}, \mathrm{ArMe}$), 3.16 (1 H , sept., J 7, $\mathrm{CH} \mathrm{Me}_{2}$), 3.04 (1 H) and $3.40(1 \mathrm{H})\left(\mathrm{AB}\right.$-system, $\left.J 14,2^{\prime}-\mathrm{H}_{2}\right), 3.87(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $6.92-7.08(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 19.9(\mathrm{q}), 20.0(\mathrm{q}), 20.1(\mathrm{q})$, 20.6 (q) and $22.1(\mathrm{q})(5 \times \mathrm{Me}), 35.0\left(\mathrm{~d}, \mathrm{CHMe}_{2}\right), 42.0\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right)$, 53.1 (s, $C \mathrm{Me}_{2}$), 84.0 (s, C-1'), 121.7 (d), 124.0 (d), 127.9 (d), 139.0 (s), 142.1 (s) and 144.4 (s) (ArC) and 222.3 (s, $\mathrm{C}=\mathrm{O}$).

2-(1^{\prime}-Hydroxy- $1^{\prime}, 2^{\prime}$-dihydro- 5^{\prime}-isopropylbenzocyclobuten- 1^{\prime} -yl)-2,4-dimethylpentan-3-one 10e.* $v_{\text {max }} / \mathrm{cm}^{-1} 3600$ and 3550br (OH) and $1695(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.08(3 \mathrm{H}, \mathrm{d}, J 7)$ and 1.09 $(3 \mathrm{H}, \mathrm{d}, J 7)\left(\mathrm{COCH} M e_{2}\right), 1.21(3 \mathrm{H}, \mathrm{d}, J 7)$ and $1.22(3 \mathrm{H}, \mathrm{d}, J 7)$ ($\mathrm{ArCH} M e_{2}$), $1.25\left(6 \mathrm{H}, \mathrm{s}, \mathrm{CMe}_{2}\right), 2.87(1 \mathrm{H}$, sept., $J 7$, $\left.\operatorname{ArCH} \mathrm{Me}_{2}\right), 3.16\left(1 \mathrm{H}\right.$, sept., $\left.J 7, \mathrm{COCH} \mathrm{Me}_{2}\right), 3.04(1 \mathrm{H})$ and $3.35(1 \mathrm{H})\left(\mathrm{AB}\right.$-system, $\left.J 14,2^{\prime}-\mathrm{H}_{2}\right), 3.94(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $7.01-$ $7.14(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 19.8(\mathrm{q}), 20.0(\mathrm{q})$, 20.2(q), 20.7(q), 24.2(q) and 24.3(q)(6×Me),34.6(d) and 35.0(d) $\left(2 \times C \mathrm{HMe}_{2}\right), 41.9\left(\mathrm{t}, \mathrm{C}-2^{\prime}\right), 53.1\left(\mathrm{~s}, C \mathrm{Me}_{2}\right), 84.1\left(\mathrm{~s}, \mathrm{C}-1^{\prime}\right), 119.8(\mathrm{~d})$, 123.1 (d), 127.5 (d), 139.2 (s), 147.4 (s), 148.2 (s) (ArC) and 222.4 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

2-(5'-tert-Butyl-1'-hydroxy-1', 2^{\prime}-dihydrobenzocyclobuten-1^{\prime}-yl)-2,4-dimethylpentan-3-one 10f.* $v_{\text {max }} / \mathrm{cm}^{-1} 3600$ and $3550 \mathrm{br}(\mathrm{OH})$ and $1700(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.08(3 \mathrm{H}, \mathrm{d}, J 7)$ and $1.09(3 \mathrm{H}, \mathrm{d}, J 7)\left(\mathrm{CH} M e_{2}\right), 1.24(3 \mathrm{H}, \mathrm{s})$ and $1.26(3 \mathrm{H}, \mathrm{s})$ (CMe_{2}), $1.30\left(9 \mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\prime}\right), 3.05(1 \mathrm{H})$ and $3.24(1 \mathrm{H})$ (AB-system, $\left.J 14,2^{\prime}-\mathrm{H}_{2}\right), 3.16\left(1 \mathrm{H}\right.$, sept., $J 7, \mathrm{CH} \mathrm{Me}_{2}$), $3.84(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 7.05$ $(1 \mathrm{H}, \mathrm{d}, J 8), 7.17(1 \mathrm{H}, \mathrm{s})$ and $7.24(1 \mathrm{H}, \mathrm{d}, J 8)(\mathrm{ArH}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}) 19.7(\mathrm{q}), 19.9(\mathrm{q}), 20.0(\mathrm{q}), 20.5(\mathrm{q})$ and $31.4(\mathrm{q})(7 \times \mathrm{Me})$, 34.9 ($\mathrm{s}+\mathrm{d}, C \mathrm{Me}_{3}$ and $C \mathrm{HMe}_{2}$), 42.0 (t, C-2'), 53.0 ($\mathrm{s}, C \mathrm{Me}_{2}$), 83.9 (s, C-1'), 120.1 (d), 121.4 (d), 124.1 (d), 141.5 (s), 144.4 (s) and $152.2(\mathrm{~s})(\mathrm{ArC})$ and $221.9(\mathrm{~s}, \mathrm{C}=\mathrm{O})$.

2-(5'-Ethyl-1'-hydroxy-1', 2^{\prime}-dihydro-2'-methylbenzocyclo-buten-1'-yl)-2,4-dimethylpentan-3-one $\quad 10 \mathrm{~g} .{ }^{*} \quad v_{\text {max }} / \mathrm{cm}^{-1}$ $3550 \mathrm{br}(\mathrm{OH})$ and $1690(\mathrm{C}=\mathrm{O})$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.11(3 \mathrm{H}, \mathrm{d}, J 7)$ and $\left.1.13(3 \mathrm{H}, \mathrm{d}, J 7)(\mathrm{CHMe})_{2}\right), 1.18(3 \mathrm{H}, \mathrm{s})$ and $1.45(3 \mathrm{H}, \mathrm{s})$ $\left(\mathrm{CMe}_{2}\right), 1.21\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.34$ ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7,2^{\prime}-\mathrm{Me}$), 2.62 ($2 \mathrm{H}, \mathrm{q}, \mathrm{CH}_{2} \mathrm{Me}$), $3.16\left(1 \mathrm{H}\right.$, sept., $J 7, \mathrm{CH} \mathrm{Me}_{2}$), $3.67(1 \mathrm{H}, \mathrm{q}, J 7$,

[^2]$\left.2^{\prime}-\mathrm{H}\right), 4.40(1 \mathrm{H}, \mathrm{s}, \mathrm{OH})$ and $7.03-7.26(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}(100$ $\mathrm{MHz}) 15.3(\mathrm{q}), 15.9(\mathrm{q}), 19.6(\mathrm{q}), 20.0(\mathrm{q}), 21.1(\mathrm{q})$ and $23.3(\mathrm{q})$ $(6 \times \mathrm{Me}), 29.2\left(\mathrm{t}, \mathrm{CH}_{2} \mathrm{Me}\right), 34.9\left(\mathrm{~d}, \mathrm{CHMe}_{2}\right), 52.0\left(\mathrm{~s}, \mathrm{CMe}_{2}\right)$, 53.5 (d, C-2'), 86.3 (s, C-1'), 120.7 (d), 121.3 (d), 128.6 (d), 143.1 (s), 144.1 (s) and 144.9 (s) (ArC) and 222.9 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

Pyrolysis of Benzocyclobutenols 10a-g.-Benzocyclobutenols $10 \mathrm{a}, \mathrm{b}, \mathbf{d}-\mathbf{f}(0.2-8 \mathrm{~g})$ were placed in a sealed glass tube under reduced or at ordinary pressure and heated at $150-180^{\circ} \mathrm{C}$ for $1-$ 3 h . The pyrolysis mixture was distilled (Kugelrohr) below $50^{\circ} \mathrm{C}$ at 25 mmHg to remove 2,4-dimethylpentan-3-one and then the benzocyclobutenone 11 was collected at $100-120^{\circ} \mathrm{C}$ at 25 mmHg . Similar pyrolyses of compounds $\mathbf{1 0 c}$ and $\mathbf{1 0 g}$ gave mainly the starting ketone $\mathbf{4 c} / \mathbf{4 g}$ along with small amounts of the benzocyclobutenone $11 \mathrm{c} / 11 \mathrm{~g}$. Isolation of compounds 11 c and 11 g was carried out by preparative GLC through direct pyrolysis of the benzocyclobutenol $\mathbf{1 0 c} / \mathbf{1 0 g}$ on a column. Reaction conditions and yields of products 11 are given in Table 2.

Benzocyclobuten-1(2H)-one 11a ${ }^{1 a}$ had b.p. $100^{\circ} \mathrm{C}$ at 25 mmHg (Found: C, 81.2; H, 5.1. Calc. for $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{O}: \mathrm{C}, 81.3 ; \mathrm{H}$, $5.1 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1800$ and $1780(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 3.90$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $7.20-7.70(4 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100 \mathrm{MHz}) 52.0(\mathrm{t}$, CH_{2}), 120.1 (d), 123.4 (d), 128.3 (d), 134.5 (d), 147.5 (s) and 150.9 (s) (ArC) and 188.3 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

5-Methylbenzocyclobuten-1(2H)-one $11 \mathrm{~b}^{3}$ had m.p. $46^{\circ} \mathrm{C}$ (from pentane) (Found: C, 81.5; H, 6.1. Calc. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}: \mathrm{C}, 81.8$; $\mathrm{H}, 6.1 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1765(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.39(3 \mathrm{H}, \mathrm{s}, \mathrm{Me})$, $3.91\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $7.12-7.20(1 \mathrm{H}, \mathrm{br} \mathrm{s})$ and $7.28-7.53(2 \mathrm{H}$, m) (ArH); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 21.6(\mathrm{q}, \mathrm{Me})$, $51.5\left(\mathrm{t}, \mathrm{CH}_{2}\right), 120.4(\mathrm{~d})$, 123.2 (d), 136.2 (d), 138.7 (s), 148.2 (s) and 148.4 (s) (ArC) and 188.7 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

2-Methylbenzocyclobuten-1(2H)-one 11c. Isolated by GLC as an oil (Found: C, 81.6; H, 6.2. $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$ requires $\mathrm{C}, 81.8 ; \mathrm{H}$, 6.1%); $v_{\max } / \mathrm{cm}^{-1} 1820$ and $1775(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 1.46(3 \mathrm{H}$, $\mathrm{d}, J 7, \mathrm{Me}), 4.28(1 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH} \mathrm{Me})$ and $7.27-7.60(4 \mathrm{H}, \mathrm{m}$, ArH); $\delta_{\mathrm{C}}(100 \mathrm{MHz}) 15.1$ (q, Me), 59.5 (d, CHMe), 120.9 (d), 122.7 (d), 129.0 (d), 135.1 (d), 146.1 (s) and 157.5 (s) (ArC) and 193.1 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

4-Methylbenzocyclobuten-1(2H)-one 11d had m.p. $51^{\circ} \mathrm{C}$ (from pentane) (Found: $\mathrm{C}, 81.7 ; \mathrm{H}, 6.1 \mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$ requires $\mathrm{C}, 81.8$; $\mathrm{H}, 6.1 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1825$ and $1760(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(90 \mathrm{MHz}) 2.44$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{Me}), 3.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $7.18-7.28(2 \mathrm{H}, \mathrm{br}$ s) and $7.30-$ $7.40(1 \mathrm{H}, \mathrm{br} \mathrm{s})(\mathrm{ArH}) ; \delta_{\mathrm{c}}(100 \mathrm{MHz}) 22.6(\mathrm{q}, \mathrm{Me}), 51.6\left(\mathrm{t}, \mathrm{CH}_{2}\right)$, 120.3 (d), 124.1 (d), 129.9 (d), 145.2 (s), 146.6 (s) and 151.4 (s) (ArC) and $188.0(\mathrm{~s}, \mathrm{C}=\mathrm{O}$).
5-Isopropylbenzocyclobuten-1(2H)-one 11 e had b.p. $112^{\circ} \mathrm{C}$ at 25 mmHg (Found: C, 82.2; H, 7.6. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$ requires $\mathrm{C}, 82.5 ; \mathrm{H}$, 7.6%); $v_{\text {max }} / \mathrm{cm}^{-1} 1775(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.25(6 \mathrm{H}, \mathrm{d}, J 7$, $\mathrm{CHMe} \mathrm{e}_{2}$), $2.95\left(1 \mathrm{H}\right.$, sept., $J 7, \mathrm{CH} \mathrm{Me}_{2}$), $3.90\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 7.20$ $(1 \mathrm{H}, \mathrm{s}), 7.40(1 \mathrm{H}, \mathrm{d}, J 7)$ and $7.45(1 \mathrm{H}, \mathrm{d}, J 7)(\mathrm{ArH}) ; \delta_{\mathrm{C}}(100$ $\left.\mathrm{MHz}) 23.8\left(\mathrm{q}, \mathrm{CH} \mathrm{Me}_{2}\right), 34.2(\mathrm{~d}, \mathrm{CHMe})_{2}\right), 51.4\left(\mathrm{t}, \mathrm{CH}_{2}\right), 117.7(\mathrm{~d})$, 123.3 (d), 134.1 (d), 148.1 (s), 148.8 (s) and 149.9 (s) (ArC) and 188.5 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

5-tert-Butylbenzocyclobuten-1(2H)-one 11 f had m.p. $87-89{ }^{\circ} \mathrm{C}$ (from pentane) (Found: $\mathrm{C}, 82.4 ; \mathrm{H}, 8.2 . \mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}$ requires C , $82.7 ; \mathrm{H}, 8.1 \%) ; v_{\text {max }} / \mathrm{cm}^{-1} 1770(\mathrm{C}=0) ; \delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CCl}_{4}\right) 1.37(9$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{Bu}^{\mathrm{t}}\right), 3.86\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right)$ and $7.05-7.55(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{C}}(100$ $\mathrm{MHz}) 31.3$ (q, CMe ${ }_{3}$), 36.0 (s, CMe_{3}), 51.8 (t, CH_{2}), 120.3 (d), 120.4 (d), 126.5 (d), 145.2 (s), 151.3 (s) and 159.8 (s) and 188.2 (s , $\mathrm{C}=\mathrm{O}$).

5-Ethyl-2-methylbenzocyclobuten-1(2H)-one $\quad 11 \mathrm{~g} . \dagger \quad v_{\text {max }} /$ $\mathrm{cm}^{-1} 1775(\mathrm{C}=\mathrm{O}) ; \delta_{\mathrm{H}}(400 \mathrm{MHz}) 1.24\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{2} \mathrm{Me}\right), 1.43$ ($3 \mathrm{H}, \mathrm{d}, J 7, \mathrm{CH} M e$), 2.69 ($2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{2} \mathrm{Me}$), $4.21(1 \mathrm{H}, \mathrm{q}, J 7$, $\mathrm{CHMe}), 7.19(1 \mathrm{H}, \mathrm{s}), 7.37(1 \mathrm{H}, \mathrm{d}, J 7)$ and $7.43(1 \mathrm{H}, \mathrm{d}, J 7)$ $(\mathrm{ArH}) ; \delta_{\mathrm{c}}(100 \mathrm{MHz}) 15.2(\mathrm{q})$ and $15.7(\mathrm{q})(2 \times \mathrm{Me}), 29.0(\mathrm{t}$, $\mathrm{CH}_{2} \mathrm{Me}$), 58.7 (d, CHMe), 119.7 (d), 122.5 (d), 135.5 (d), 145.6 (s), 146.5 (s) and 155.1 (s) (ArC) and 193.3 ($\mathrm{s}, \mathrm{C}=\mathrm{O}$).

References

1 (a) M. P. Cava and K. Muth, J. Am. Chem. Soc., 1960, 82, 652; (b) H Hart, J. A. Hartlage, R. W. Fish and R. R. Rafos, J. Org. Chem., 1966, 31, 2244; (c) H. Hart and J. A. Hartlage, J. Am. Chem. Soc., 1967, 89, 6672; (d) D. J. Bertelli and P. Crews, J. Am. Chem. Soc., 1968, 90, 3889; (e) R. V. Stevens and G. S. Bisacchi, J. Org. Chem., 1982, 47, 2393.

2 H. Hart and R. W. Fish, J. Am. Chem. Soc., 1960, 82, 749.
3 P. Schiess and M. Heitzmann, Angew. Chem., 1977, 89, 485.
4 B. L. Chenard, C. Slapak, D. K. Anderson and J. S. Swenton, J. Chem. Soc., Chem. Commun., 1981, 179.
5 J. Kang, Y. R. Choi, B. J. Kim, J. U. Jeong, S. Lee, J. H. Lee and C. Pyun, Tetrahedron Lett., 1990, 31, 2713.

6 M. Yoshioka, M. Arai, K. Nishizawa and T. Hasegawa, J. Chem. Soc., Chem. Commun., 1990, 374.
7 M. Yoshioka, K. Nishizawa, M. Arai and T. Hasegawa, J. Chem. Soc., Perkin Trans. 1, 1991, 541.
8 Y. Kitaura and T. Matsuura, Tetrahedron, 1971, 27, 1597.
9 A. T. Nielsen, C. Gibbons and C. A. Zimmerman, J. Am. Chem. Soc., 1951, 73, 4696.
10 T. D. Harris and G. P. Roth, J. Org. Chem., 1979, 44, 2004.

Paper 1/04547D
Received 2nd September 1991
Accepted 11th November 1991

[^0]: ${ }^{a}$ High-pressure mercury lamp with Pyrex filter was used. ${ }^{b}$ Based on the amount of consumed starting material. ' Based on converted starting material. ${ }^{d}$ Reaction was very fast and gave a complex mixture of products. ${ }^{e}$ No reaction.

[^1]: * Compounds $\mathbf{1 0 b}-\mathbf{g}$ were obtained as oils of high purity as determined on the basis of their ${ }^{1} \mathrm{H}$ NMR spectra. However, their complete purification by distillation for microanalysis could not be achieved because they gradually decomposed to the corresponding benzocyclobutenones, 2,4-dimethylpentan-3-one, and/or the starting ketones.

[^2]: * See footnote on preceding page.
 \dagger Compound 11 g was isolated by GLC as an oil in 90% purity on the basis of its ${ }^{1}$ H NMR spectrum.

